This paper develops nonparametric estimation for discrete choice models basedon the mixed multinomial logit (MMNL) model. It has been shown that MMNL modelsencompass all discrete choice models derived under the assumption of randomutility maximization, subject to the identification of an unknown distribution$G$. Noting the mixture model description of the MMNL, we employ a Bayesiannonparametric approach, using nonparametric priors on the unknown mixingdistribution $G$, to estimate choice probabilities. We provide an importanttheoretical support for the use of the proposed methodology by investigatingconsistency of the posterior distribution for a general nonparametric prior onthe mixing distribution. Consistency is defined according to an $L_1$-typedistance on the space of choice probabilities and is achieved by extending to aregression model framework a recent approach to strong consistency based on thesummability of square roots of prior probabilities. Moving to estimation,slightly different techniques for non-panel and panel data models arediscussed. For practical implementation, we describe efficient and relativelyeasy-to-use blocked Gibbs sampling procedures. These procedures are based onapproximations of the random probability measure by classes of finitestick-breaking processes. A simulation study is also performed to investigatethe performance of the proposed methods.
展开▼
机译:本文基于混合多项式logit(MMNL)模型开发了离散选择模型的非参数估计。已经表明,MMNL模型包括所有随机选择最大化模型,这些模型是在假定未知分布$ G $的情况下,在随机效用最大化的前提下得出的。注意到MMNL的混合模型描述,我们采用贝叶斯非参数方法,对未知混合分布$ G $使用非参数先验,以估计选择概率。通过研究混合分布之前的一般非参数后验分布的一致性,我们为所提出方法的使用提供了重要的理论支持。一致性是根据选择概率空间上的$ L_1 $类型距离定义的,并且是通过将基于先验概率平方根求和的,最近的强一致性方法扩展到回归模型框架来实现的。转向估计,讨论了用于非面板和面板数据模型的略有不同的技术。对于实际实施,我们描述了有效且相对易于使用的阻塞式吉布斯采样程序。这些过程是基于有限棒破坏过程类别的随机概率测度的近似值。还进行了仿真研究,以研究所提出方法的性能。
展开▼